

#### Life Cycle Assessment -Energy and CO<sub>2</sub> Emissions of Aluminum-Intensive Vehicles

National Laboratory



# LCA Study Scope

- **Standards Compliance:** 
  - ISO 14040 and ISO 14044
  - Draft 2012 CSA-PCR-2012:1 (environmental performance of autoparts) \_
- Functional Unit:
  - 2010 Toyota Venza Vehicle
  - conventional powertrain
  - Vehicle configurations \_
    - current production steel vehicle
    - lightweight steel (LWSV) EPA Body-in-White, Sept. 2012 Study
    - Aluminum-intensive (AIV) vehicle FEV/EDAG, Jan 2013 Study
- Cradle-to-grave approach
  - Primary metal production \_
  - Autoparts manufacturing and assembly Transportation
  - Use



- Semi-fabrication material production
- End-of-life metals recycling



## **LCA Study Goals**

- End-of-Life Recycling:
  - closed-loop approach ISO 14044:2006
    - Avoided primary production equals recovered scrap
- Life cycle impacts (Ecoinvent V. 1.02)
  - Total Primary energy
  - Cumulative Energy Demand
  - Global Warming Potential (CO2e)
  - Acidification Potential
  - Eutrophication Potential
  - Photo Chemical Smog Potential
  - Respiratory Effects Potential,
  - Ozone Depletion Potential -- TRACI 2.1 Version 1.00



3 Managed by UT-Battelle for the Department of Energy

# **LCA – Functional Unit Materials**

| Material                     | Baseline | LWSV | AIV  |
|------------------------------|----------|------|------|
| Steel (kg)                   | 1011     | 794  | 366  |
| Pickled Hot Rolled (SP)      | 242      | 181  | 172  |
| Electro-Galvanized (BIW, SP) | 684      | 344  | 138  |
| Hot-Dip Galvanized (BIW, SP) | 59       | 45   | 34   |
| Engg. Steel (Other)          | 27       | 224  | 22   |
| Aluminum (kg)                | 157      | 194  | 459  |
| Sheet                        | 12       | 55   | 296  |
| Cast (A356)                  | 128      | 125  | 125  |
| Extrusion                    | 17       | 14   | 38   |
| Vehicle Weight (kg)          | 1711     | 1399 | 1236 |

Mass distribution includes impacts on secondary part mass changes due to primary mass reduction SP = Structural Part



### Vehicle Life Cycle Stages



Presentation name

for the Department of Energy

### Steel LCI Data Methodology

#### LCI = X - (RR-S)Y(Xpr - Xre)[Applicable for when scrap could be both inputs and outputs]

#### Where:

- X = Cradle-to-gate product LCI
- RR = Recovery rate, i.e., steel scrap from system, 95% for stamped automotive steel – SRI 2011)
- S = Scrap input into primary production process (44%, 20%, 6.5%, and 100.1% for hot dip galv., pickled hot rolled coil, electrogalvanized, and eng. steel respectively)
- Y = Process Yield (EAF for steel, i.e., 91.6%)
- Xpr Xre = Difference in energybetween primary and secondary metal production
- Prompt scrap generated (45% for stamping and 15% eng. steel) [Krupitzer 2013] Managed by UT-Battelle



# **2012 Steel LCI Data**

#### • Primary steel production - unavailable

- all LCI data contain ferrous scrap input
- S factor (LCI data provided represent X part of the formula, excludes recycling)

#### • North America data:

- Pickled hot rolled (Structural Part)
- Hot dip galvanized coil (BIW, Structural Part)

#### • Global data:

- Electro-galvanized (BIW, Structural Part)
- Engineering steel (Other)

#### • Value of scrap data in terms of Y(Xpr-Xre) available for global only

- 91.6% EAF global melting efficiency (lower than 98% assumed for aluminum)
- No significant difference in LCI data for advanced steels, i.e., AHSS, UHSS etc.

#### Source: World Autosteel

# Life Cycle - Al Stamped Part



## Life Cycle Stages - Al Cast Part



# **Life Cycle Stages - Al Extrusion Part**



# **Aluminum LCI Data**

- 2013 Aluminum LCI data Al ingot
  - no distinction made for AI alloy compositions used for cast or wrought materials
  - Data represent production-weighted average data for North America
    - Primary, secondary production US & Canada
    - Semi-fabricated products US, Canada, & Mexico
- Forming technology stamping, extrusion, and casting
  - Shape Casting (Die Casting: 60%; Permanent Mold Casting: 30%; Sand Casting: 9%)
- Electricity profile based on North America AI producer production mix
- Electricity used for electrolysis based on domestic aluminum smelters (Hydropower: 75%, Coal: 24%, Oil+Natural Gas+Nuclear Power: 1%)
  - Share of electrolysis (Pre-baked 95% vs. Soderberg 5%)
- Prompt scrap recovery
  - Sheet: 45% [same as steel stamping]; Cast: 4.3%; and Extrusion: 22.5%)
- Scrap melting efficiency 98% (based on scrap and subsequent dross/salt cake recycling)

#### SimaPro software by Pré Consultants for LCA



### **Vehicle Use Phase**

 Mass-induced fuel consumption improvement due to lightweight steel and aluminum designs (constant performance)

 $CA,n = (mpart, n - mpart, b) \times VA \times LTDD$ , where,

CA,n = the total life cycle mass-induced fuel change (decrease/or increase) of new autoparts designs in liters

*mpart, n* = mass in kg of new design autoparts (i.e., 1399 kg LWSV, 1236 kg AIV)

- *mpart, b* = mass in kg of baseline autoparts (baseline, replaced with the new design), i.e., 1711 kg
- VA = mass-induced fuel consumption reduction value <u>with</u> <u>powertrain adaptation</u> - 0.38l/100km.100 kg

*LTDD* = baseline life-time driving distance (250,000 km, 155,000 mi.)

- Gasoline primary energy: 39.6 MJ/I (ANL GREET Model – Well-To-Pump and Pump-To-Wheels)
- Baseline Vehicle Fuel Economy 24 mpg



# **Life Cycle Energy Findings**



Note: Based on Baseline 1168 kg Components of a 1711 kg Curb Weight Vehicle

#### **MJ/Vehicle**

|          | Mfg.    | Use      | End-of-<br>Life | Total<br>Life Cycle |
|----------|---------|----------|-----------------|---------------------|
| Baseline | 93,275  | 100,2819 | -27,983         | 1,068,111           |
| LWSV     | 81,973  | 848,275  | -52,311         | 877,938             |
| AIV      | 115,084 | 708,327  | -98,893         | 724,518             |



#### 13 Managed by UT-Battelle for the Department of Energy

# **Life Cycle Environmental Impacts**

| Parameter             | <u>Unit</u>  | <b>Baseline</b> | LWSV     | AIV      |
|-----------------------|--------------|-----------------|----------|----------|
| Global warming        | kg CO2 eq    | 6.93E+04        | 5.82E+04 | 4.93E+04 |
| Ozone depletion       | kg CFC-11 eq | 2.86E-05        | 4.10E-05 | 1.27E-04 |
| Smog                  | kg O3 eq     | 1.52E+03        | 1.26E+03 | 1.09E+03 |
| Acidification         | kg SO2 eq    | 5.32E+01        | 4.44E+01 | 4.29E+01 |
| Eutrophication        | kg N eq      | 2.53E+00        | 2.14E+00 | 2.11E+00 |
| Carcinogenics         | CTUh         | 7.11E-06        | 7.67E-06 | 9.62E-06 |
| Non-carcinogenics     | CTUh         | 2.63E-04        | 2.93E-04 | 2.06E-04 |
| Respiratory effects   | kg PM2.5 eq  | 6.56E+00        | 5.56E+00 | 5.02E+00 |
| Eco-toxicity          | CTUe         | 4.13E+02        | 4.96E+02 | 7.78E+02 |
| Fossil fuel depletion | MJ surplus   | 2.51E+03        | 2.29E+03 | 3.43E+03 |

Impact Assessment Method: TRACI 2.1 Version 1.00



14 Managed by UT-Battelle for the Department of Energy

### **Energy Breakeven Analysis**



15 Managed by UT-Battelle for the Department of Energy

National Laborator

### **Energy Breakeven Analysis**





### **CO2 eq. Breakeven Analysis**



17 Managed by UT-Battelle for the Department of Energy

National Laboratory

### **CO2 eq. Breakeven Analysis**



for the Department of Energy

### **Conclusions – Auto. Aluminum LCA**

- Aluminum Intensive Vehicle (AIV) technology offers the lowest life cycle Energy and CO<sub>2</sub> impact
  - Key factor fuel economy improvement due to light-weighting
  - AIV reduces vehicle mass by 28% (vs. baseline) significantly reducing vehicle use phase energy consumption (32%) and CO<sub>2</sub> emissions (29%)
- Use phase (250,000 KM, 155,000 M) contributes over 90% of life cycle impacts for all vehicle configurations studied

| -        |                    | OVERALL    |      |            |
|----------|--------------------|------------|------|------------|
|          | <b>VEHICLE USE</b> | LIFE CYCLE | %USE |            |
| Baseline | 1002819            | 1068111    | 94%  | MJ/Vehicle |
| LWSV     | 848275             | 877938     | 97%  |            |
| AIV      | 708327             | 724518     | 98%  |            |

- Lightweight Steel Vehicle (LWSV) has the lower production phase environmental impact offset by higher use phase energy and CO<sub>2</sub>
- AIV Energy Break-even distance:
  - AIV:Baseline vehicle 15,000 km (9,300 miles)
  - AIV:LWSV

44,000 km (30,000 miles)

